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Structure functions of turbulent velocity fluctuations up to fourth order have 
been measured a t  several heights in the atmospheric boundary layer over the 
open ocean, and the results are compared with theoretical predictions for separa- 
tions in the inertial subrange. The behaviour of second- and third-order quantities 
shows substantial agreement with the predictions of Kolmogorov’s original theory 
over a wide range of separations, but the results of a recent modification of the 
theory, attempting to account for intermittency in the local dissipation rate, 
are also consistent with the data over somewhat shorter separation intervals. 
The behaviour of the measured fourth-order structure function disagrees with 
that predicted from Kolmogorov’s original work, but good agreement is found 
with the results of the modified theory. 

1. Introduction 
For turbulent flows a t  sufficiently high Reynolds numbers, the original theory 

of local isotropy of Kolmogorov (1941 a, b,  c), and later extensions by Kolmogorov 
(1962), Obukhov (1962), and Yaglom (1966), furnish a number of conflicting 
predictions for the behaviour of structure functions, correlations, and spectra 
of velocity fluctuations in the inertial subrange. Although several workers have 
reported the results of investigations to test the degree of local isotropy in spectra 
and the behaviour of corresponding second-order structure functions, measure- 
ments of the higher-order quantities, which are generally more sensitive to 
recent theoretical refinements, are relatively scarce. Obukhov (1951) made 
atmospheric measurements of the second-order structure function 

D n k )  = B((u - u’I2), 

where u and u’ were the longitudinal velocities measured at two points separated 
laterally by a distance r ,  and found it increased like r* in the inertial subrange 
as originally predicted by Kolmogorov (1941 a).  Grant, Stewart & Molliet (1962) 
and Pond, Stewart & Burling (1963), measured energy spectra in a tidal channel 
and in the wind over waves respectively. They found the corresponding result 
that the one-dimensional energy spectrum q5(k1) was consistent with the relation 
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Q ( k , )  = K'sfk$ over a considerable range, where k ,  = 2nf/U,  f is frequency 
(Hz), U is the mean velocity, s is the mean rate of dissipation per unit mass, and 

The only reported measurements of higher-order moments obtained in a 
turbulent flow exhibiting an inertial subrange in the energy spectrum appear to  
be the atmospheric boundary-layer measurements of Gurvich ( 1960) and Stewart, 
Wilson & Burling (1970). Gurvich measured the skewness factor for two dif- 
ferent spatial separations, but made no systematic attempt to  determine the 
general behaviour of the skewness factor or triple correlation function with 
varying separation distance. Some data concerning the variation of skewness and 
flatness factors with separation distance were discussed by Stewart et al. (1970) 
but no measurements of the individual structure functions were presented. 
Measurements of triple correlations and skewness factors in locally isotropic 
laboratory grid turbulence have been reported by Townsend (1948), Stewart 
(1951), Frenkiel & Klebanoff (1967), and Van Atta & Chen (1968), but these 
data were all obtained a t  Reynolds numbers too low for the existence of an inertial 
subrange. The present measurements in the turbulent boundary layer over the 
ocean are the results of an initial attempt to study the behaviour of higher-order 
moments of the fluctuating velocity in the inertial subrange for comparison with 
existing theoretical predictions. 

2. Theoretical relations 
The nkh-order structure function is ( ( u - u ' ) ~ ) ,  where r is the separation dis- 

tance of two points, and u and u' are the components of the fluctuating velocity 
a t  the two points in the direction of the separation. For separations in the inertial 
subrange, 7 4 r 4 L, where 7 = (v3/e)a is the Kolmogorov length scale, v is the 
kinematic viscosity, e is the mean rate of dissipation of kinetic energy, and L 
is the characteristic length scale of the energy containing eddies. According to 
Kolmogorov's original theory, in the inertial subrange the structure functions 
depend only on r and 6, and hence by dimensional analysis 

( 1 )  

where the C, are universal constants. The form of the third-order structure 
function in the inertial subrange can also be derived directly from the KBrmBn- 
Howarth equation and the constant C, is thereby evaluated a priori. Thus, for n 
equal to 2 ,3 ,  and 4 we have 

Ddd(y)  = ((u-uf)2) = C,(er)+, 

&&(?.) = ((u-u')3) = -$€?., 

((u - u')") = Cn(€?.)Bn, 

(2% b, c) i B d d d d ( r )  = ((?h-u')4) = C,(m)%. 

Since ( Z b )  contains no unknown constants that must be determined em- 
pirically, a direct absolute comparison may be made with experimental data, 
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When ( 2 b )  is made dimensionless, using the Kolmogorov length scale and the 
Kolmogorov velocity scale vk = (ye)%, it becomes 

Bddd(r)/vE = - 0.8r/v. (3)  

A further consequence of ( 2 )  is that the skewness factor 

a,nd flatness factor 

must be constant for 7 << r < L. As discussed in detail by Hinze (1959) and 
Pond, Stewart & Burling (1963), the constants C,, K’, and X are simply related, 
if spectral contributions to Ddd and Bddd from outside the inertial subrange are 
negligible. One expects this condition to be nearly satisfied if the Reynolds 
number of the turbulence is large. The magnitude of the skewness factor is 
then related to K‘ and C, by the relations, 

(4) 

s = ((u-u’)3)/((u-u’)qit 

F = ( (u-u ’ ) * ) / ( (u-u ’ )~)~ 

8 = -O.l(K’)-P = -gc,t. 
According to Landau & Lifshitz ( 1  959), the arguments leading to the preceding 

relations do not take into account the possible influence of the statistical dis- 
tribution of fluctuations in the local dissipation rate E(Z, t )  - 8. The pronounced 
intermittency of the smaller scales of atmospheric turbulence produces a large 
dispersion in 2, and according to the model of the cascade process described by 
Yaglom (1966) the variance of log E ,  ( E ,  is the average ofE over a sphere of diameter 
r )  is given by the expression, 

&gi, = A(W+,ulogL/r, 

where ,u is a universal constant and A(Z, t )  depends on the macrostructure ofthe 
flow. In addition, the probability distribution of 2 is found to be lognormal. The 
spectrum of the fluctuations in local dissipation is given by 

E&) - k-l+a, (5) 

(6) 

where the Qn(?Z, t )  are now not absolute constants, but may depend on the macro- 
structure of the flow. These studies thus predict an increase in the exponent of r 
in the relation for the second-order structure function, and a corresponding 
decrease in the exponent of Ic in the energy spectrum. The third-order structure 
function remains linear in r,  as required by ( 2 b ) ,  which is an independent con- 
sequence of the Navier-Stokes equation. The exponent of r is decreased for 
higher-order structure functions. 

and (1  ) is replaced by a more general expression of Kolmogorov (1  962) : 

((u - u’)n) = C,(S, t )  (er))n (~/r)m(n-3)/18, 

The modified expressions for the skewness and flatness factors are 

10-2 
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3. Experimental arrangement and data analysis 
The data were obtained in the period 17-18 May 1969, in fair trade wind 

conditions during the Barbados Oceanographic and Meteorological Experiment. 
The measurements were made from FLIP, the stable floating instrument plat- 
form of the Scripps Institution of Oceanography, at a location of 13-00N55-00W, 
about 400 km east of the island of Barbados. The local sea state consisted of 
approximately 1.5 m swells with 30-70 cm wind waves. 

The fluctuating component of the turbulent velocity field in the mean wind 
direction u was measured at three heights above mean sea level with a single 
vertically oriented hot-wire 5p in diameter and 1 mm long. The hot-wire was 
operated in the constant resistance mode using a DISA 55D05 anemometer, 
and the anemometer output was linearized with a DISA 55D10 linearizer. At 
the lowest level, a boom arrangement placed the hot-wire probe about 15 m to one 
side of FLIP’S hull to minimize flow interference, while for the upper levels the 
probe was mounted on top of a telescoping tower, which could be extended a 
maximum of about 20 m above the upper deck. 

The hot-wire was normally calibrated with a cup anemometer at the same 
vertical level, using 100 second averaged readings of the two instruments. Some 
hot-wire calibrations were also carried out inside the lab aboard FLIP using a 
small calibration wind-tunnel. 

The relatively slow convergence of measurements of third-order moments 
(recognized by Gurvich, whose longest sample of data lasted 24 min), a lack of 
apriori theoretical estimates of the expected rate of convergence for odd moments, 
and experience with similar measurements in the laboratory made it desirable 
to obtain the longest possible continuous records of data. The linearized hot-wire 
signal was therefore BM tape recorded at a speed of 19.1 cm/sec, providing the 
longest possible uninterrupted runs (about 80 min of data plus calibrations) 
while preserving adequate frequency response over the entire range of the 
turbulent spectrum. The analog tape was later played back and sampled with 
a twelve bit analog to digital converter a t  a rate of 521.5 samples/sec. The signal 
was d.c. coupled throughout the entire recording-playback system t o  avoid any 
possibility of errors in the measured triple correlations due to high-pass filtering 
as described by Van Atta & Chen (1968). For various reasons, the longest series 
of data used in the present computations corresponded to about 66 min (at 3 m), 
while the runs for 21 and 31 m were about 53 and 26 min, respectively. 

To obtain some minimal measure of the variability of the measurements, the 
digital data for each height were first processed in shorter sections each consisting 
of 409,600 samples. Velocity differences were computed using every fourth sample 
as the initial point. The structure functions, skewness factor, and flatness factor 
were computed for each section; these results were then averaged over all the 
available data for each height, to produce the final measured values. Taylor’s 
hypothesis in the form r = Ut was used to interpret the measured time delay 
as a spatial separation r .  

The mean rate of dissipation of energy E was estimated in the usual way by 
measuring the mean square value of the time derivative (obtained with a dif- 



Structure functions of turbulence 149 

ferentiating circuit) of the velocity ( (au/at)z), invoking Taylor’s hypothesis in 
the form 

1 2  - _-- _ -  a 
ax ua t ’  

and using the isotropic relation e = - 15~((au/ax)~) to compute E .  

To assess the influence of fluctuations in 2., the value o fp  was estimated using 
the digitized velocity derivative data to compute Eelcl, the energy spectrum of 

= (au/ax)2, as in earlier work by Gurvich & Zubkhovski (1963) and Pond & 
Stewart (1 965). 

4. Results and discussion 
4.1. Xecond-order structure functions 

The second-order structure function is needed to compute the skewness factor X, 
and its behaviour also serves as one criterion for the existence and extent of 
inertial subrange behaviour which may be compared with earlier measurements 
and theoretical predictions. The measured second-order structure functions are 
shown in figure 1. The symbols used here to identify data obtained for different 
vertical heights, z, denote the same data and levels throughout the following 
figures. The data for each individual height are fairly well fitted by Kolmogorov’s 
original relation with Dad - r )  over a considerable range for separations larger 
than about 5 cm. The data for the higher levels fit the power law expression best, 
whereas the z = 3m data exhibit a distinct curvature. It is possible that the 
z = 3 m data were influenced in some measure by the wind waves and swell, but 
the present measurements allow no assessment of this influence. For r < 5cm, 
the data deviate from this relation, as expected in the viscous range where D,, 
should vary like r2. For the 31 m level, the data follow the inertial subrange rela- 
tion up to the largest separations considered (about 44 m), considerably extending 
the result of Obukhov, who measured Dnn(r) using two anemometers separated 
at  most by 60 cm. Corresponding energy spectra computed for the highest level 
also exhibited inertial subrange-like behaviour ( E  N k-8) extending to these 
large (anisotropic) scales as noted by previous investigators. The 3 m and 21 m 
data exhibit a departure from Dad N r% behaviour for all separations larger than 
about twice the height of the probe above mean sea level. According to Pond 
et al. (1963), a reasonable necessary condition for local isotropy is given by 
kz 4.5, where z is the height above mean sea level. Taking 

the present evidence suggests that the region of local isotropy might extend to  
all length scales for which kz 2 7r. As found by previous investigators, the E - k-5 
behaviour of the corresponding energy spectra for z = 3m extended to the 
largest scales for which the spectra were computed (about 40 m). Thus, it appears 
that  deviations in the behaviour of the second-order structure function from 
inertial subrange form may be a considerably more accurate and sensitive 
criterion for local isotropy than spectral measurements, since the latter follow 
the inertial subrange law for scales so large that the flow cannot be locally 
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isotropic. Although the spectra and correlation functions are of course Fourier 
transforms of one another, there is no a priori exact correspondence between the 
extent of the power law inertial subranges for intermediate values of the variables 
r and k, so that one obtains more information and insight concerning the structure 
of the turbulence by computing both of them. 
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In  figure 2, the measured D,,(r), normalized with the Kolmogorov velocity 
scale vK, are plotted versus the separation distance normalized with the Kolmo- 
gorov length scale 7. The Kolmogorov length scale is about @8mm for the 
z = 3 m data and 1.1 mm for z = 21 m and z = 30 m. The data for the three 
heights collapse fairly well into a single curve. The apparent lower limit of the 
inertial subrange is a t  about 50q, which is a factor of two or three larger than is 
usually inferred from energy spectra. The average value of C, determined from 
fits to the data is 2.3, or, using (4), K' = 0.58. Corresponding values of K' deter- 
mined directly from the energy spectra were systematically higher than those 
obtained from C,, with an average value of 0.70, indicating that spectral con- 
tributions to D,, outside the inertial subrange are not negligible. All values 
of K' determined from G, and one of the values determined from the spectra lie 
within the scatter of previous spectral measurements compiled by Pond et al. 
(1963). The remaining values determined from the spectra appear to  be un- 
usually large, although similarly large values in the range 0-60-0.69 have been 
reported by Gibson et al. (1970) from earlier FLIP measurements during 
BOMEX. 



Structure functions of turbulence 151 

The second-order structure function data can be reinterpreted according to 
the refined theory of inertial subrange similarity taking into account the varia- 
tions in E .  An example of the data and procedure used for estimating ,u directly 
from the energy spectra Eel of (au/at)2 is shown in figure 3. The average measured 
slope of these spectra in the inertial subrange was very nearly -0.5, giving 
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FIGURE 2. Second-order structure functions normalized with Kolmogorov scales. 

,u = 0.5, a value close to the mean of the scatter in earlier measurements cited 
previously. Then, according to (6), the power of r in Ddd(r) increases by 0.056, 
so that Ddd(r) N r0.722. As shown in figure 1, this expression fits the data for 
5 em < r < 80 em very well for all z, and in fact produces a considerably better 
fit than r* in this range. This range is considerably smaller than that for which 
the r% expression provides a fairly good overall fit to the data. The maximum 
separation for which Ddd(r) - r0.722 appears to be rather insensitive to variations 
in z. For x = 3m, the value of this maximum separation predicted by the ex- 
pression kz = 4.5 is of the same order as the observed value (4.2 m as compared 
with about 1 m observed), but for z = 21 m and 31 m the predicted value of 
43.2 m is much larger than observed. From figure 2, r/q r lo3 is the maximum 
length scale for which the turbulence can be locally isotropic according to the 
refined criterion for Ddd(r). This result is in qualitative agreement with measure- 
ments of the extent of local isotropy in the boundary layer over the sea by 
Weiler & Burling (1967). Measuring the ratio of the transverse and longitudinal 
energy spectra, they found that as the length scale decreased this ratio increased 
slowly from zero for large scales to only about 15 yo of the value for isotropic 
turbulence at length scales of order r /q  = lo3. The ratio increased most rapidly 
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for 103 > r /7  > 1 0 2  and continued to increase at  a decreasing rate for smaller 
scales, although never reaching the isotropic value even for the smallest scales 
considered (r/T 21 10). These measurements and the present ones of Ddd(r) thus 
indicate the same restricted range of local isotropy, and the more extensive 
r% range in D,, could be interpreted as accidental in the same sense as the per- 
sistent k+ behaviour of the energy spectrum for very small wave-numbers. 
These remarks, which are based on very limited data, do not rule out the alternate 

f, HZ 

FIGURE 3. Energy spectrum of ( a ~ / a s ) ~  for z = 31 m, U = 11.3 m/s. 
The dashed line has a slope of - 0.5. 

possibility that the agreement of the data with the modified expression for D,, 
in the range 5,, d r < 80,, may itself be fortuitous. A fit over some restricted 
range is to be expected, since the slope must eventually increase as r decreases 
toward the viscous subrange where Ddd - r2. Because of this relative loss of 
variance at  small r due to viscosity, one might expect that on a linear plot power 
law fits to the measured structure fractions would not pass through zero, but 
through some small negative value. This effect was found to be negligibly small 
for the present data, as expected for high Reynolds number turbulence. 

4.2. Third-order structure functions 

The scatter of the measured third-order structure functions for sub-sections of 
data consisting of 409,600 samples each was much larger than for the corre- 
sponding measurements of the second-order structure function. The differences 
between individual runs increased considerably as the separation distance in- 
creased. Even for the longest runs, it appears that the duration of the records 
obtained in the present measurements may be marginally adequate to produce 
statistical convergence in computations of third-order quantities. 
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The final measured third-order structure functions, normalized with Kolmo- 
gorov velocity and length scales are shown in figure 4. As the separation distance 
increases within the inertial subrange, the third-order structure function in- 
creases monotonically, and, for r / r  < lo3, the data collapse fairly well into a 
single curve, and cluster around the theoretical prediction (equation 3) of 
Kolmogorov. I n  contrast with measurements of energy spectra and second-order 
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FIGURE 4. Third-order structure functions normalized with Kolmogorov scales. The solid 
line is the theoretical prediction from Kolmogorov’s inertial subrange analysis of the 
KAnnin-Howarth equation. 

correlations, this comparison of theory and experiment for third-order quantities 
is absolute, involving no unknown (universal or otherwise) constants. The 
observed approximately linear behaviour and absolute agreement lends further 
support to  Kolmogorov’s theory of local isotropy. From the present limited 
amount of data, it appears that the linear dependence of the structure function 
on separation distance may extend to larger distances as the height above the 
surface is increased. Generally, this upper separation limit is undoubtedly a 
function of the local geometry of the large-scale motion in the particular flow 
under study. 

The measured skewness factors are shown in figure 5. The data for all x collapse 
fairly well in the range lo2 ,< r / y  < lo4. The skewness factor decreases very 
slowly with increasing separation distance, decreasing from 0.4 to 0-2 as the 
separation varies by a factor of lo3. This behaviour is qualitatively similar t o  
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that reported by Stewart et al. (1'970). For each individual run a t  a given 2, S 
appears to reach a plateau in the range 3 x 10, < r/q < lo4, where Dad&) and 
Dad(r) vary nearly like r and d, respectively, as predicted by Kolmogorov. From 
(7), the effect of the fluctuations in E would be to cause S to decrease very slowly 
(like r-ooE3) in this range. The present data are obviously not sufficiently precise 
to  distinguish between S = constant and S N r-008. The mean measured value of S 
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FIGURE 5 .  Skewness factor as a function of separation distance normalized with Kolmogorov 

length. The dashed curve is the same quantity for grid-generated turbulence. 

in the plateau region is about - 0.18, while the values obtained from (4) using the 
averaged measured C, and K' are S = - 0.225 and - 0.17, respectively. Hence, 
there is only fair agreement between the measured S and that computed from 
C,, but the S determined from the unusually large value of K' is very close to  
the measured value. At larger separations, the widely different behaviour and 
increasing scatter of the data for different heights may be caused both by the 
different behaviour of the structure functions for these levels and a lack of 
sufficiently large samples of data to  achieve sufficient statistical convergence. 

The striking contrast between the slowly varying behaviour of the skewness 
factor in atmospheric turbulence and laboratory measurements of the same 
quantity in relatively low Reynolds number turbulent flows is illustrated in 
figure 5 by including data for the time-skewness factor in grid turbulence. The 
behaviour of this function in grid turbulence is well established, as there is 
excellent agreement between the data of Frenkiel & Klebanoff (1967), and Van 
Atta & Chen (1968). I n  grid turbulence, the skewness factor is a monotonically 
rapidly decreasing function of separation distance which exhibits no trace of a 
plateau, apparently because the Reynolds number is too small for the existence 
of an inertial subrange. 
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4.3. Fourth-order structure function 
As anticipated from work in grid turbulence, the scatter between individual 
runs of the measured fourth-order structure functions was much smaller than for 
the triple moments. As shown in figure 6, the measured values vary smoothly 
and monotonically up to the largest separations considered. The normalized 
data collapse fairly well into a single curve, with the exception of one of the runs 

I I I J 
10 102 105 104 105 

47 
FIGURE 6. Fourth-order structure functions normalized with Kolmogorov scales. The solid 

lines have a slope of 1.222, while the dashed line has a slope of Q. 

a t  z = 3m, which also produced the lowest values for the other normalized 
structure functions. The difference in the exponent of r predicted by the original 
and modified theories is twice as large as for the second-order structure function. 
As may be seen from figure 6, Bdddd(r) is clearly not proportional to r* as predicted 
by the original theory ( l ) ,  but very closely follows the r1*222 dependence predicted 
by the modified theory. Thus, as far as structure functions of velocity are con- 
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cerned, in order to observe an unambiguously defined departure from the original 
predictions of Kolmogorov, it is necessary to measure functions of a t  least 
fourth order. 

The measured flatness factors F(r ) ,  shown in figure 7, are smoothly decreasing 
functions of r ,  as found earlier by Stewart et al. (1970). Because of the previously 
discussed behaviour of the fourth- and second-order structure functions, the flat- 
ness factor decreases nearly like r-0.111 over a considerable range for intermediate 
values of r / r  and is roughly proportional to r-022 over a short range for smaller 

1 1  I I I I 
10 1 02 101 104 10s 

47 
FIGURE 7. Flatness factor as a function of separation distance normalized with Kolmogorov 
length. - - - -, a slope of - 0.1 11 ; - - - - - -, a slope of - 0.22. -, the same quantity 
for grid-generated turbulence. 

values of rls.  For large separations, F(r )  approaches a value of 3, which would be 
obtained for all r if the joint probability density of u and u' were a bivariate 
Gaussian distribution. The values of F are several times larger than those 
measured in unsheared grid turbulence for corresponding values of r / r ,  indicating 
that the joint probability density is considerably less Gaussian for bhe present 
data. This is to be expected, as even the one-dimensional probability densities 
of u and u' are markedly non-Gaussian in a shear flow. I n  so far as the flatness 
factor is a measure of the intermittency of the turbulence, the present measure- 
ments confirm the familiar result that  the intermittency becomes increasingly 
stronger as the separation distance or scale of the eddies considered is reduced. 
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4.4. Probability distributions of velocity diflerences and derivatives 

The non-zero values for the third-order structure function and skewness, as 
well as the fact that the flatness factor is considerably greater than 3.0, are 
consequences of the fact that  the joint probability density of the fluctuating 
velocities a t  different times (or points, using Taylor's hypothesis) is non-Gaussian. 
The joint probability density has not been measured in the present study, but 

(wat) /a  
FIGURE 8. Probability density of &/at for z = 3 m, u = 11 m/s. a is the standard deviation 

of auiat. ___ , the Gaussian distribution. 

some probability densities for both the velocity differences and the velocity 
derivative were determined and found to  be very similar to previous atmospheric 
measurements by other investigators. The probability densities for the velocity 
difference and the derivative were very similar. As illustrated by the example in 
figure 8, the probability of very small values of &/at or u-u' and values of 
I a u p t  I or I u - u ' I  greater than 3v is considerably larger than would be expected 
for a Gaussian distribution, while the probability of intermediate values is smaller. 
The data shown are very similar to those obtained by Sheih (1969) from airborne 
hot-wire measurements. 

Yaglom's model of the cascade process predicts that, the distribution of Z. is 
lognormal. Assuming local isotropy, one can test for lognormality by measuring 
p [ ( a ~ / a z ) ~ ] ,  or p[ (u -  u ' ) ~ ] .  The present data for the distribution functions of 
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these quantities, an example of which is shown in figure 9, is very similar to that 
previously obtained by Gurvich (1966), Sheih (1969), and Gibson, Stegen 8: 
Williams (1970). They interpreted the linear portion of the distribution function 
as evidence of lognormality and ascribe any curvature to the effects of noise, 
which could significantly increase the Probability density for small values of 
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FIGURE 9. Example of measured distribution function of log (8u/az)z. If measured values 
of (au/az)a were lognormally distributed for all au/ax, then the entire distribution function 
would lie on a straight line in this representation. 

aulax. However, Stewart et al. (1970) have found that direct comparisons of the 
probability densities for similar data show significant deviations from lognormal 
behaviour at both high and low values. I n  view of these differences, definite con- 
clusions with regard to lognormality of the present data will require a more 
complete analysis. 

5 .  Conclusions 
Measured fourth-order structure functions of atmospheric turbulence do not 

vary with separation as predicted by the original Kolmogorov theory, but are 
consistent with the behaviour predicted by modifications of the theory which 
attempt to account for the intermittency of energy dissipation. I n  this respect, 
no conclusive evidence was found of a measurable effect on the second-order 
structure function. The measured absolute value of the third-order structure 
function and its nearly linear dependence on r over a restricted range of r are 
consistent with Kolmogorov's inertial subrange analysis of the KBrmBn-Howarth 
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equation. The measured skewness factor exhibits a broad plateau in the same 
range, with a value near that predicted from C,, the measured second-order 
structure function constant. 
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